
MANAGING ORGANIZATIONS

Why Data Science Teams Need
Generalists, Not Specialists
by Eric Colson

MARCH 08, 2019

HIROSHI WATANABE/GETTY IMAGES

In The Wealth of Nations, Adam Smith demonstrates how the division of labor is the chief

source of productivity gains using the vivid example of a pin factory assembly line: “One

[person] draws out the wire, another straights it, a third cuts it, a fourth points it, a fifth

https://hbr.org/topic/managing-organizations
https://hbr.org/search?term=eric%20colson

grinds it.” With specialization oriented around function, each worker becomes highly skilled

in a narrow task leading to process efficiencies. Output per worker increases many fold; the

factory becomes extremely efficient at producing pins.

This division of labor by function is so ingrained in us even today that we are quick to

organize our teams accordingly. Data science is no exception. An end-to-end algorithmic

business capability requires many functions, and so companies usually create teams of

specialists: research scientist, data engineers, machine learning engineers, causal inference

scientists, and so on. Specialists’ work is coordinated by a product manager, with hand-offs

between the functions in a manner resembling the pin factory: “one person sources the

data, another models it, a third implements it, a fourth measures it” and on and on.

Alas, we should not be optimizing our data science teams for productivity gains; that is what

you do when you know what it is you’re producing—pins or otherwise—and are merely

seeking incremental efficiencies. The goal of assembly lines is execution. We know exactly

what we want—pins in Smith’s example, but one can think of any product or service in

which the requirements fully describe all aspects of the product and its behavior. The role of

the workers is then to execute on those requirements as efficiently as possible.

But the goal of data science is not to execute. Rather, the goal is to learn and develop

profound new business capabilities. Algorithmic products and services like

recommendations systems, client engagement bandits, style preference classification, size

matching, fashion design systems, logistics optimizers, seasonal trend detection, and more

can’t be designed up-front. They need to be learned. There are no blueprints to follow;

these are novel capabilities with inherent uncertainty. Coefficients, models, model types,

hyper parameters, all the elements you’ll need must be learned through experimentation,

trial and error, and iteration. With pins, the learning and design are done up-front, before

you make it. With data science, you learn as you go, not before you go.

https://multithreaded.stitchfix.com/blog/2015/07/14/glmms/
https://multithreaded.stitchfix.com/blog/2018/11/08/bandits/
https://multithreaded.stitchfix.com/blog/2018/06/28/latent-style/
https://multithreaded.stitchfix.com/blog/2017/12/13/latentsize/
https://multithreaded.stitchfix.com/blog/2016/07/14/data-driven-fashion-design/
https://multithreaded.stitchfix.com/blog/2016/07/21/skynet-salesman/
https://multithreaded.stitchfix.com/blog/2016/08/23/seasonal-trends/

In the pin factory, when learning comes first, we neither expect nor want the workers to

improvise on any aspect the product, except to produce it more efficiently. Organizing by

function makes sense since task specialization leads to process efficiencies and production

consistency (no variations in the end product).

But when the product is still evolving and the goal is to learn, specialization hinders our

goals in several ways:

1. It increases coordination costs. Those are the costs that accrue in time spent

communicating, discussing, justifying, and prioritizing the work to be done. These costs

scale super-linearly with the number of people involved. (As J. Richard Hackman taught us,

the number of relationships (r) grows as a function number of members (n) per this

equation: r = (n^2-n) / 2. And, each relationship bares some amount of coordination costs).

When data scientists are organized by function, the many specialists needed at each step,

and with each change, and each handoff, and so forth, make coordination costs high. For

example, statistical modeling specialists who want to experiment with new features will

have to coordinate with data engineers who augment the data sets every time they want to

try something new. Similarly, every new model trained means the modeler will need

someone to coordinate with for deployment. Coordination costs act as a tax on iteration,

making it more difficult and expensive, and more likely to dissuade exploration. That can

hamper learning.

2. It exacerbates wait time. Even more nefarious than coordination costs is the time that

elapses between work. While coordination costs can typically be measured in hours—the

time it takes to hold meetings, discussions, design reviews—wait-times are commonly

measured in days or weeks or even months! Schedules of functional specialists are difficult

to align as each specialist is bound to be allocated to several initiatives. A one-hour meeting

to discuss changes may take weeks to line up. And, once aligned on the changes, the actual

work itself also needs to be scheduled in the context of multiple other projects vying for

https://hbr.org/product/leading-teams-setting-the-stage-for-great-performances/an/3332-HBK-ENG

specialists’ time. Work like code changes or research that requires just a few hours or days to

complete still may sit undone much longer before the resources are available. Until then,

iteration and learning languish.

3. It narrows context. Division of labor can artificially limit learning by rewarding people for

staying in their lane. For example, the research scientist who is relegated to stay within her

function will focus her energy towards experimenting with different types algorithms:

regression, neural nets, random forest, and so on. To be sure, good algorithm choices could

lead to incremental improvements. But there is usually far more to gain from other activities

like integrating new data sources. Similarly, she may develop a model that exhausts every

bit of explanatory power inherent to the data. Yet, her biggest opportunity may lie in

changing the objective function or relaxing certain constraints. This is hard to see or do

when her job function is limited. Since the research scientist is specialized in optimizing

algorithms, she’s far less likely to pursue anything else, even when it carries outsized

benefits.

Telling symptoms can surface when data science teams are run like pin factories, for

example in simple status updates: “waiting on data pipeline changes” and “waiting on ML

Eng resources” are common blockers. However, I believe the more insidious impact lies in

what you don’t hear, because you can’t lament what you haven’t yet learned. Perfect

execution on requirements and complacency brought on by achieving process efficiencies

can mask the difficult truth, that the organization is blissfully unaware on the valuable

learning they are missing out on.

The solution to this problem is, of course, to get rid of the pin factory. In order to encourage

learning and iteration, data science roles need to be made more general, with broad

responsibilities agnostic to technical function. That is, organize the data scientists such that

they are optimized to learn. This means hiring “full stack data scientists”—generalists—that

can perform diverse functions: from conception to modeling to implementation to

measurement. It’s important to note that I am not suggesting that hiring full-stack data

https://hbr.org/2018/11/curiosity-driven-data-science

scientists results in fewer people overall. Rather, I am merely suggesting that when

organized differently, their incentives are better aligned with learning vs. efficiency gains.

For example, say you have a team of three creating three business capabilities. In the pin

factory, each specialist will be one-third devoted to each capability, since no one else can do

their job. In the full-stack, each generalist is completely devoted to a business capability,

increasing scale and learning.

With fewer people to keep in the loop, coordination costs plummet. The generalist moves

fluidly between functions, extending the data pipeline to add more data, trying new

features in the model, deploying new versions to production for causal measurement, and

repeating the steps as quickly as new ideas come to her. Of course, the generalist performs

the different functions sequentially rather than in parallel—she is just one person after all.

However, doing the work typically takes just a fraction of the wait-time it would take for

another specialist resource to come available. So, iteration time goes down.

Our generalist may not be as adept as a specialist in any one function. But we are not seeking

functional excellence or small incremental improvements. Rather, we seek to learn and

discover all-new business capabilities with step-change impact. With full context for the

holistic solution she sees opportunities that a narrow specialist won’t. She has more ideas

and tries more things. She fails more, too. However, the cost of failure is low and the

benefits of learning are high. This asymmetry favors rapid iteration and rewards learning.

It is important to note that this amount of autonomy and diversity in skill granted to the

full-stack data scientists depends greatly on the assumption of a solid data platform on

which to work. A well-constructed data platform abstracts the data scientists from the

complexities of containerization, distributed processing, automatic failover, and other

advanced computer science concepts. In addition to abstraction, a robust data platform can

provide seamless hooks into an experimentation infrastructure, automate monitoring and

alerting, provide auto-scaling, and enable visualization of debugging output and algorithmic

https://multithreaded.stitchfix.com/blog/2018/02/22/flotilla/
https://algorithms-tour.stitchfix.com/#data-platform

results. These components are designed and built by data platform engineers, but to be

clear, there is not a hand-off from the data scientist to a data platform team. It’s the data

scientist that is responsible for all the code that is deployed to run on top of the platform.

I too was once lured to a function-based division of labor by the attraction of process

efficiencies. But, through trial and error (there is no better way to learn) I’ve found that

more generalized roles better facilitate learning and innovating, and provide the right kinds

of scaling: to discover and build many more business capabilities than a specialist approach.

(A more efficient way to learn about this approach to organization versus the trial and error I

went through is to read Amy C. Edmondson’s book “Teaming: How Organizations Learn,

Innovate, and Compete in the Knowledge Economy”).

There are some important considerations that may make this approach to organization more

or less tenable in some companies. This process of iteration assumes low cost of trial and

error. If the cost of error is high you may want to rethink (i.e., it is not advised for medical

applications or manufacturing). In addition, if you are dealing with petabytes or exabytes of

data, specialization in data engineering may be warranted. Similarly, if keeping a business

capability online and available is more important than improving it, functional excellence

may trump learning. Finally, the full-stack data science model relies on the assumption of

great people. They are not unicorns; they can be found as well as made. But they are in high

demand and it will require competitive compensation, strong company values, and

interesting work to attract and retain them. Be sure your company culture can support this.

Even with all that said, I believe the full stack data scientist model provides a better starting

place. Start with them, and then consciously (grudgingly) move toward a function-based

division of labor only when clearly necessary.

There are other downsides to functional specialization. It can lead to loss of accountability

and passion from the workers. Smith himself criticizes the division of labor, suggesting that

it leads to the dulling of talent—that workers become ignorant and insular as their roles are

https://www.amazon.com/Teaming-Organizations-Innovate-Compete-Knowledge/dp/1511383674
https://www.amazon.com/Inquiry-Nature-Causes-Wealth-Nations-ebook/dp/B00847CE6O

confined to a few repetitive task. While specialization may provide process efficiencies it is

less likely to inspire workers.

By contrast, generalist roles provide all the things that drive job satisfaction: autonomy,

mastery, and purpose. Autonomy in that they are not dependent on someone else for

success. Mastery in that they know the business capability from end-to-end. And, purpose

in that they have a direct connection to the impact on the business they’re making. If we

succeed in getting people to be passionate about their work and making a big impact on the

company, then the rest falls into place naturally.

Eric Colson is Chief Algorithms Officer at Stitch Fix. Prior to that he was Vice President of Data Science and

Engineering at Netflix. @ericcolson

Related Topics: ANALYTICS | TECHNOLOGY | LEADING TEAMS | TECHNOLOGY

This article is about MANAGING ORGANIZATIONS

 FOLLOW THIS TOPIC

Comments

Leave a Comment

P O S T

0 COMMENTS

https://www.amazon.com/Drive-Surprising-Truth-About-Motivates/dp/1594484805
https://hbr.org/search?term=eric%20colson&search_type=search-all
https://twitter.com/ericcolson?lang=en
https://hbr.org/topic/analytics
https://hbr.org/topic/technology
https://hbr.org/topic/leading-teams
https://hbr.org/topic/technology
https://hbr.org/topic/managing-organizations
https://hbr.org/2019/03/why-data-science-teams-need-generalists-not-specialists#

POSTING GUIDELINES

We hope the conversations that take place on HBR.org will be energetic, constructive, and thought-provoking. To comment, readers must

sign in or register. And to ensure the quality of the discussion, our moderating team will review all comments and may edit them for clarity,

length, and relevance. Comments that are overly promotional, mean-spirited, or off-topic may be deleted per the moderators' judgment. All

postings become the property of Harvard Business Publishing.

 JOIN THE CONVERSATION

https://hbr.org/sign-in
https://hbr.org/register

